

















































































































Outline of a Method for Designing Domain-Specific Modelling Languages
Objectives: In the ideal case, the phase should produce a description of essential design objec-

tives and a definition of the budget. However, due to the unavoidable contingencies, it may

first require to move on to subsequent phases before this outcome can be realized.

Clarify rationale and
purpose

Assess feasibility

Micro Process:

Determine scope

Outline long-term
perspective

Outline expected
benefits

Evaluate economics

Figure 10: Micro Process 'Clarification of Scope and Purpose’

The rationale of a DSML will usually be related to generic prospects such as promoting
productivity and quality. These need to be clarified with respect to the specific purpose and
scope of the DSML to be developed. For this purpose, it is required to identify the modelling
tasks that are to be addressed. To get a clearer picture it is important to look at previous pro-
jects that were aimed at these modelling tasks asking what impact a DSML would have had
on performance and outcome. To outline the scope of the targeted DSML, modelling projects
can be categorized with respect to modelling subject, complexity and frequency. The higher
the complexity and frequency of modelling a certain subject, the higher the benefit to be ex-
pected from a respective DSML. Also, the prospective users’ attitude and skills need to be
accounted for. If they are reluctant or even reject the idea of a DSML, a negative impact on
economics can be expected. Against this background, one can conduct a high-level assess-
ment of benefits with respect to certain classes of modelling tasks and corresponding users.
To evaluate the economics, costs and risks of introducing, using and maintaining the DSML
need to be addressed. This requires accounting for the availability of development tools, the
qualification of developers and users and changes of requirements to be expected in future
times. Sometimes, the availability of a DSML will enable additional options such as the inte-
gration with other DSML or the use of models at run time. With respect to evaluating the
investment into the development of a DSML, these options should be taken into account.
Even if the economic perspective of a DSML seems to be promising, its feasibility may still be
a challenge — especially if no previous experiences with similar projects exist. In these cases,

it may be a good idea to start with a smaller scale project.

Input: profiles of developers and users, outline of modelling scenarios, reports on previous

modelling projects.

Participants: Manager, Business Analyst, User, Domain Expert, Language Designer
31



Elements of the Method

Risks: Lack of information and knowledge may contribute to an inappropriate outline of the
DSML'’s intended scope and to a misleading assessment of its benefits. To counter this risk, it

is crucial to include respectively qualified experts.

Results: preliminary project plan, budget at least for first project phase, assignment of per-
sonnel at least to first phase, including external service providers, outline of long-term per-

spective
6.2.4 Analysis of Generic Requirements

The conception of DSML should account for generic requirements. They apply to every
DSML, however, with different weight. Also, they may need to be adapted to a particular
DSML.

Objectives: Specify and generic requirements and create corresponding documentation.

Analyse available
catalogue

Assign priorities

Micro Process:

Modify, refine
requirements

Figure 11: Micro Process ‘Analysis of Generic Requirements’

There are not many catalogues of generic requirements available. Also, with respect to the
fact that the field has not reached a mature state yet, not all proposals need to be convincing.
Therefore, the analysis of available catalogues — like the one presented in 3 — should pay spe-

cial attention to the rationale given for each requirement.
Input: Existing catalogue(s) of and publications on generic requirements for DSML.
Participants: Domain Expert, User, Language Designer, Tool Expert

Risks: If no appropriate catalogue is available, the development of generic requirements is a
cumbersome activity that implies the risk to miss requirements. Even if one can build on an

existing catalogue, there is no guarantee that it is comprehensive.

Results: Catalogue of generic requirements. Each requirement should be described and justi-
fied with respect to the purpose of the DSML. Also, each requirement should be character-

ized with respect to its relevance.
6.2.5 Analysis of Specific Requirements

As already elucidated above, it is probably the most challenging peculiarity of developing a
DSML that specific requirements can often not be analysed in a straightforward way. There-
32



Outline of a Method for Designing Domain-Specific Modelling Languages

fore, there is need for an approach that does not rely on merely analysing existing modelling

tasks and asking users for their expectations.

Objectives: Develop a comprehensive list of specific requirements.

Develop use
scenarios
Design examplary
diagrams

Refine scenarios

Micro Process:

Assign priorities

Derive
requirements

Figure 12: Micro Process 'Analysis of Specific Requirements'

To analyse specific requirements, users, business analysts and language designers need to be
supported with developing a clear idea of what they may expect from the DSML. Our expe-
rience with developing DSML suggests that one approach is especially suited for this pur-
pose. Based on use scenarios that are developed with respect to previous and future tasks,
the potential use of the DSML is illustrated through the design of preliminary diagrams (for
a definition of the terms ‘diagram’ and ‘diagram type’ see Frank, 2011b). These serve as a
medium for further refining the use scenarios. To support the derivation of specific require-

ments, it has proven successful for us to describe the scenarios in a certain structure.

For developing use scenarios relevant modelling scenarios from the past should be identified
and described. In addition to that further possible use scenarios may be developed. This can
be promoted by presenting rudimentary scenarios which are then further refined. Each sce-
nario is related to a certain diagram type. To get an idea what information should be repre-
sented in respective diagrams, one can start with a rudimentary graphical representation and
then develop a list of questions that are related to the diagram. With respect to preparing for
a corresponding modelling tool, it is helpful to specify for each question whether it can be
answered by a machine (A), by a human only (H), or in a partially automated way (P). Note
that the stages ‘develop use scenarios’, ‘design exemplary diagrams’ and ‘refine scenarios’
are interweaved. Each diagram type should be clearly described with respect to its purpose
and its key concepts. Furthermore, it should be related to other diagram types that might
supplement it with respect to specific purposes. The actual example diagrams have an im-
portant function especially for novice users, since they provide an illustration of what they
might expect from the intended DSML. Therefore, designing exemplary diagrams should

account for an illustrative graphical representation — even though it will be replaced by a

33



Elements of the Method

more professional notation later on. Based on the example diagram and the extensible list of
questions, all participants — supported by domain experts and language designers — are sup-
posed to commonly develop specific requirements. If a requirement poses a substantial chal-
lenge to language design or the realisation of a corresponding tool, it should be marked as
such. Hence, a challenge is related to design decisions that result from requirements. They
need to be addressed at the design stage at the latest and may result in relaxing correspond-

ing requirements.

The following examples illustrate this approach. The numbers used for requirements and

challenges correspond to those in the original source, too.

Organisational Chart

This diagram type corresponds to prevalent graphical representations of organisational structures. It
depicts organisational units as well as associations between them. Note that — different from typical
organisational charts — organisational charts expressed through the MEMO OrgML feature a precise
semantics of relationships between organisational units. It can also be applied to represent the tem-
poral organisational structure of a project.

Purpose: Versatile representation of organisational structure to support the analysis of division of
labour, decision and control mechanisms etc. as well as their redesign. At the same time: a represen-
tation/documentation of the organisational structure as part of organisational knowledge manage-
ment, e.g. to support new employees or external consultants with getting an appropriate picture of
an organisation. Possible questions to be addressed — depending on the level of detail features by an
organisational chart:

* Whatis the average span of control (number of directly subordinated units)? A
* Whatis the percentage of positions that require at least a bachelor degree? A
* What is the percentage of positions that constitute the organisation’s core competence? A
*  Which organisational units suffer from poorly qualified employees? A
* Are there conflicting responsibilities of organisational units? P
* Are there similar positions that could be merged? P
* Does is make sense to reduce or widen the span of control? H
* What kind of impact would this have on the qualification required for employees? H
* What are the effects of organisation culture on work coordination? H
Potentially integrated with: Human Resource Management, ERP, IT Management

Key concepts: organisational unit, various kinds of relationships

Example: The example in figure E1 illustrates an organisational chart of a strategic business unit. The
edges between the symbols representing organisational units express aggregations.

34




Outline of a Method for Designing Domain-Specific Modelling Languages

SBU
,Semiconductors’

l L l R T

Procurement ReEEREN S Manufacturing Finance Marketing Nllnformatlon
lanagement

Development

Controlling Accounting
Sourcing Planning Advanced sc-
Systems Design

IT- Software

Services Development

. q Production
Maintenaince p
Planning

Network
Management

User Services

— part of

CRM Marketing
Business Unit Research
Head Department
Department <g <£
IT Service q Software
Manager r st Advisor

Group

Position

Figure E1: Example of Organisational Chart

Specific Requirements

Requirement SR1: To allow for elaborate analyses, it should be possible to describe organisa-
tional units in a differentiated way. This includes concepts to describe formal qualification,
skills, tasks, responsibilities etc.

Requirement SR2: An organisational chart represents types of organisational units. Therefore,
it would not be appropriate to assign instance-level features, e.g. the actual number of em-
ployees within a department to a particular type. However, in those cases, where there is only
one instance of a type (e.g. ‘Marketing Department’), this kind of semantic overload would not
be too harmful — at least from a pragmatic point of view. Therefore, the OrgML should provide
concepts that allow for a precise description, which can be combined with a more pragmatic,
overloaded representation.

Requirement SR3: Sometimes, certain assertions do not only apply to one organisational unit
(or role or committee), but to more. It may be, for example, that various organisational units
are in charge of a certain process. To elegantly deal with this kind of variance, there is need for
concepts that allow for expressing abstractions over a set of organisational units (or roles and
committees respectively).

Requirement SR4: While some organisational units will usually occur only once, others — this is
typically the case for positions — can come with multiple instances. Firstly, there is need to al-
low for differentiating between multiplicity constraints (“There must not be more than one
marketing department.”, “There must be one and exactly one head of the marketing depart-
ment.”) and actual numbers (“The current headcount of the marketing department is 26.”).
The notation should support a clear differentiation of these two meanings.

Challenges

Challenge C1: The representation of actual headcounts — or the actual number of positions of a
certain kind — faces a conflict. On the one hand, a model should feature a level of abstraction

35




Elements of the Method

that makes it widely independent from state changes on the instance level. On the other hand,
information about these numbers may be regarded as relevant for an organisational chart. In
case the model is managed by a tool which is integrated with a corresponding information sys-
tem, these numbers could be updated automatically whenever changes occur. Otherwise it
will probably be better to use numbers that are marked as estimations.

6.2.6 Business Process Association Diagram or Business Process Map

Business process diagrams serve to model one business process type only. Sometimes there is need
for looking at a group of business process types or even all business process types of a company at
the same time. Business process association diagrams allow for representing several business pro-
cess types and the relationships that exist between them. They are sometimes referred to as ‘busi-
ness process maps’. Note that relationships between business process types may recommend refer-
ring to additional models, e.g. resource models. The business process types included in a business
process map can be decomposed into decomposition diagrams, which allows for analysing common-
alities of business process types on a more detailed level.

Purpose: Representation of various business process types and various types of relationships be-
tween them, such as support, competition, dependence — in order to foster analysis and (re-) design
of business process systems, i.e. sets of interrelated business process types. Potential questions in-
clude:

* Are there process types that compete for the same resources? A
* Are there process types that target conflicting goals? P
* What are the most important processes? P
* Isthere need for reducing the number of processes? H
* Are there any problematic inter-process dependencies? P
* Isthere need for improving inter-process coordination? P
Key concepts: business process, goal, various types of relationships

Example: Figure E2 shows a simplified process association diagram. It refers to organisational units,
thereby supporting the analysis of organisational conflicts.

36




Outline of a Method for Designing Domain-Specific Modelling Languages

Sales Assistant

- | |

Order Management — Handle Request for Handle Complaint
- K —
Product A P> Technical Support Product A

% P i

m Technical

Order Management — Support Handle Complaint

® Product B &« —‘ Product B ‘

A
Customer Acquisition
T N
L Handle Complaint
Order Management — o
® product C < ) Product C
Sales Manager

—D>>  may trigger —+—+  similar to M critical performance
—+e responsible for —> special case of could be outsourced
———O supports <++> competition B requires reorganisation

Figure E2: lllustration of business process association diagram

Specific Requirements

Requirement SR5: In addition to a set of predefined relationship types, it should be possible to
define further relationship types (corresponds to Requirement A2).

Challenges

Challenge C2: Again, specialisation relationships mark a challenge. The example in figure E2
gives an impression of the benefit that could be generated by specialisation: If all features that
are specified for a superordinate process type (e.g. supported by ‘Technical Support’ for ‘Han-
dle Complaint Product A’) would be inherited to the specialized process types, this would not
only contribute to a model’s clarity, but also foster its maintainability. At the same time, it
seems extremely unlikely for most cases that the quest for substitutability could be satisfied.
Probably, the only option will be to aim at a relaxed concept of specialisation.

Input: previous modelling scenarios; collections of complex analysis and decision tasks, espe-

cially those that require accounting for multiple perspectives

Participants: Business Analyst, Domain Expert, Language Designer, Manager, Tool Expert,

User; optional: Graphic Artist

Risks: If all participants lack a background in modelling with DSML, it may be difficult or
even frustrating to develop appropriate scenarios and corresponding diagrams. This, how-
ever, is crucial for the analysis of requirements. While the scenarios and corresponding ex-
emplary diagrams are an important instrument to analyse requirements by illustrating the
purpose of the prospective DSML, they may also compromise the analysis of requirements

by restricting the scope to particular aspects. Therefore, selecting scenarios and creating ex-

37




Elements of the Method

emplary diagrams require experienced domain experts and language designers that have an
idea of how the targeted DSML could look like, but are open minded enough to appreciate

suggestions and requests made by other participants.

Results: documentation of specific requirements and corresponding rationale; documentation

of specific challenges
6.2.7 Language Specification

The specification of the abstract syntax and semantics is the pivotal part of designing a
DSML. It requires accounting for the range of potential applications. It will usually include
various design decisions, some of which are common in conceptual modelling while others
are specific for the design of meta models. The specification of a meta model implies the se-
lection of a meta modelling language. For corresponding requirements see section 6.1 and
Frank (2011a).

Objectives: Specification and documentation of meta model and corresponding constraints.

Micro Process:

Create basic
glossary

[ Evaluate anddrelvise Create extended
meta mode! glossary

t f

DeS|gn draft meta Develop concept
model dictionary

\ Select Meta
Modelling Language

Figure 13: Micro Process: 'language Specification'

The specification of a DSML is directed towards reconstructing concepts of the respective
domain of discourse. For this reason, it makes sense to first develop a glossary with key
terms. At its first development step that we refer to as ‘basic’, the glossary is a dictionary of
terms with corresponding descriptions. It may be presented either in alphabetic order and/or
with respect to semantic categories, such as ‘Organisation Structure’, ‘Processes’, ‘Resources’

etc. The following excerpt illustrates structure and content of a basic glossary.
Term Description ‘

Board A board is an organisational unit with command line authority. A board can include positions and
roles. Note that within the language the concept is used in a wider sense than in board of direc-
tors (which would be a special type of board).

Committee A committee consists of group of people. Committees can address a wide range of different

38



Outline of a Method for Designing Domain-Specific Modelling Languages

purposes. Some may make decisions that are mandatory for other organisational units. Others
may serve counselling purposes only. In any case, a committee does not include positions, but
only roles. The challenges that are related to expressing different levels of abstraction are dealt
with by using intrinsic features. Note that the graphical notation may be subject of further revi-
sions.

Department A department is an organisational unit, which will usually include further organisational units. It
may be part of a superordinate organisational unit.

Organisational Unit An organisational unit is a part of an organisation (institutional) that reflects a permanent princi-
ple of the division of labour. An organisational unit may contain other organisational units. The
definition of organisational units can be based on functional aspects (e.g. 'Finance', 'Production’,
'Marketing' ...), on objects (e.g. 'trucks', 'sport cars' ‘power train’), market-oriented (e.g. 'North
America', 'Europe’, 'consumer’, 'reseller' ...) or combinations of these. Usually there is one posi-
tion that is in charge of an organisational unit.

Organisation An organisation is a goal-oriented social or socio-technical system — like a business firm, a non-
profit organisation, public administration etc. While it could be regarded as the top-level organi-
sational unit, it makes sense to define it as a special concept, because it has features that do not
apply to organisational units.

Position A position is the smallest organisational unit. It does not contain any other positions. Usually, a
position is assigned to one employee. There are, however, exceptions of this rule ("job sharing").

Role A role is defined by a set of responsibilities, the actor who fills the role, has to perform. It is usual-
ly less formal than a position - and it is orthogonal to position: An employee who holds a position
can also fill one or multiple roles at the same time.

Table 2: lllustration of Glossary

The basic glossary serves as a collection of terms that are used in the targeted domain of dis-
course. That does not mean, however, that each of these terms is suited to be included in the
DSML. Instead, it needs to be decided whether a term should be reconstructed as part of the
intended DSML or whether it should rather be specified with the DSML. To support this
decision, we use an extended structure of the glossary that reflects key decision criteria. Cur-
rently, I am working on corresponding guidelines, which will be published shortly. In this
report, only a few of them are used to illustrate key ideas. The conception of DSML that we
favour is aimed at a covering a wider range of (re-) use. In other words: Usually we do not
develop a DSML for just one project as it is suggested e.g. by Kelly and Tolvanen (2008).
Therefore, it is important that the semantics of a language concept is invariant throughout the
entire domain and in time. To promote comprehensibility and usability of a DSML it should
be avoided to include concepts that are not needed. Hence, each collected term should be
checked for its relevance. A language concept is — usually — intended as an abstraction over
types. This results in two demands: First, the semantics of the respective instances should
vary — otherwise it would literally not make much sense to bother with instantiations. Se-
cond, it should be checked whether it corresponds to an intuitive understanding that possi-
ble instances are perceived as types. The following example illustrates a possible glossary
entry for the term ‘Organisational Unit’. ‘+’ indicates that the term clearly fulfils the corre-
sponding criterion. ‘0’ expresses that it fulfils the criterion to a satisfactory degree, while ‘-

indicates that it fails to satisfy the corresponding criterion. ‘c’ means that — with respect to
39



Elements of the Method

the considered criterion — the use of the term is contingent, i.e. in some cases it fulfils the cri-
terion, in others it does not. Note that there are no precise guidelines based on ‘hard facts” for
evaluating domain terms against the suggested criteria. Instead, it is recommended to make
use of discursive evaluation that is aimed at developing reasons that are regarded as con-
vincing by the participants.

Organisational Unit

An organisational unit is a part of an organisation that reflects a permanent principle of the division of
labour. An organisational unit may contain other organisational units.

Example instantiations ‘Division Electronic Devices’, ‘Marketing Department’, ‘Car Manu-
facturing Plant’, ‘Human Resources Department’

a) invariant semantics The term is used on a high level of abstraction. The es-
sence of its semantics should not vary substantially.

b) relevance This is a key term for describing organisation structures. +

c) variance of type semantics | The semantics of types of organisational units can vary

significantly.

d) instance as type intuitive At least some of the potential instances will be regarded as
types almost intuitively, e.g. ‘Department’, ‘Division’. Other
potential instances, such as ‘Marketing Department’, ‘Con- +
sumer Electronics Division’, will probably not be regarded c

as types by many. Hence, the final assessment of this
criterion depends on the recommended instantiation.

Table 3: Structure for Checking Suitability of Potential Language Concept

Subsequently to assessing the collected terms, it is required to decide for each term whether
or not to include it in the DSML. This decision recommends reflecting upon the intended
scope, i.e. the targeted domain, of the language. As a consequence, one may decide to ex-
clude a term from the language or to narrow the scope in order to an extent where a particu-
lar term is characterized by invariant semantics. This step results in a revised version of the
extended glossary. Before specifying the language with a meta model, a concept dictionary
can be created. It serves two purposes: On the one hand, it should prepare for the construc-
tion of the meta model; on the other hand, it serves as a documentation of the terms specified
in the meta model. The structure of a concept dictionary reflects specific design decision to
be made with the construction of meta models. For this purpose, it does not only represent
the collection of attributes and associations that are required for the specification of a con-
cept. In addition to that it proposes a structure to support a more elaborate description. At-
tributes are separated into two groups. Attributes on the type level are supposed to describe
characteristic features of a type that is instantiated from the respective meta type (in the ex-
ample below: from ‘OrganisationalUnit’) — independent from its own instances. This is dif-
ferent with the category “Attributes with references to instance level’. It serves to group those
attributes of a type that can be initialized only by accounting for its instances. The following
two examples serve to illustrate this category: ‘numberOfPositions’ is an attribute that re-
quires counting the number of actually assigned positions. The attribute ‘averageCostPerPo-

sition” recommends collecting data about actual costs for each of the respective positions.

40



Outline of a Method for Designing Domain-Specific Modelling Languages

With respect to the design of a corresponding modelling tool it is useful to specify how the
required instance-level data could be determined. The predefined structure of the dictionary
allows to differentiate between two approaches: ‘Obtainable’ serves to express that corre-
sponding values could be (not: have to be) obtained from external sources, e.g. from an ERP
system. That would require caring for an appropriate interface. ‘Derivable” indicates that a
value might be calculated from other parts of a model. Take, for instance, the attribute ‘num-
berOfPositions” in the below example. If within the model of an organization, an organiza-
tional unit is assigned all its positions (as type), and each position type is characterized by
the number of its instances, then the total number of positions assigned to an organizational
unit can be calculated, i.e. derived. In addition to these two categories, an attribute can also
be marked as “intrinsic’ or ‘simulation’. An intrinsic attribute is not an attribute of a type in a
strict sense. It is, however, characteristic for a type in the sense that it applies to all of its in-
stances. In other words: It is intrinsic to the concept represented by the type. For example:
Every business process instance has a starting and a termination time. However, these fea-
tures cannot be represented as attributes of a type, because they do not apply to the type.
Marking such a feature as intrinsic dissolves this dilemma by specifying that it can be initial-
ized on the instance-level only. For a detailed description of intrinsic features see Frank
(2011a, p. 19 £.). ‘Simulation” indicates that an attribute might be used for simulation pur-
pose. For instance: A certain position type, e.g. ‘Sales Agent’, could be assigned the attribute
‘availability” to represent an assumption about the availability of corresponding employees
throughout a reference period. In addition to attributes, associations can also be described
both on type level and with reference to the instance level (the latter is not include in the be-
low example). Associations can be intrinsic, too. If associated concepts are marked as intrin-
sic, they can be marked as ‘obtainable’. If the meta type ‘Position’ is associated to the intrinsic
type ‘Employee’, it is possible to express that instances from ‘Employee’ can be obtained
from an external source. Finally, each entry of the concept dictionary is supplemented with
corresponding constraints in natural language. There may be concepts in the relevant do-
main of discourse that are relevant for certain kinds of analysis, but that bulk against formal-
ization. To protect against dysfunctional effects (see 2.3), the description of respective con-
cepts in the concept dictionary should include corresponding remarks. In the dictionary
shown below, this is the case for the concept ‘CoporateRelevance’. Figure 15 shows how to

explicitly account for limitations of formalisation in a meta model.

The below example of only one entry illustrates that a concept dictionary can grow to a re-
markable size. Creating — and maintaining — it can therefore require a substantial effort. It is
a particular challenge to synchronize it with corresponding parts of the glossary and the me-
ta model. Therefore, creating a concept dictionary will usually make sense only, if there is a

tool that synchronizes corresponding parts of the dictionary and the meta model.

41



Elements of the Method

This is a key abstraction of the language. It can be instantiated in various ways.
On the highest level of aggregation, it can be instantiated into the type of the
L 3 entire organisation. To differentiate types according to the technical language
OrganisationalUnit . L . . .
used in an application domain, it is possible to refer to a corresponding type
description by initialising the attribute orgLevel. Often, there will be only one

instance of a type that is instantiated from this meta type.

Attributes on type level

name Allows for assigning a type name. Note that the name of this type will usually be
the same as the corresponding instance name since there will often be only one

instance.
mission Serves to describe the mission and the responsibilities.
orgDimension Serves to specify the dimension the definition of the type of organisational unit is

based on. If no value is specified, the value of the OrganisationalUnit, this Organ-
isationalUnit is part of, applies. The value specified for OrganisationalUnit must
not violate the value specified for the corresponding Organisation.

staffUnit If this attribute is set to #true, the corresponding organisational unit type is re-
garded as staff unit. The semantics of staff units varies to a remarkable degree. In
general, a staff unit is regarded to serve counselling purposes. Hence, the staff
experts are charged with gathering and summarizing information and giving
technical assistance to generalist managers who are responsible for making final
decisions. Staff units are not included in the regular line of command. Hence, a
position that is in command of a staff unit cannot be in command of another
organisational unit that is not a staff unit.

corporateRelevance Allows for expressing the relevance the organisational unit has for an organisa-
tion’s competitiveness. The assigned value represents the degree of relevance,
e.g. 0: no need; 1: could do without; 2: needed; 3: essential. Note that relevance
may include multiple aspects. Therefore, mapping it to an ordinal scale can lead
to a loss of information, which may produce dysfunctional effects when using it
without critical reflection.

subjectOfOutsourcing Allows for expressing whether the corresponding type of organisational unit
should be outsourced. The assigned value expresses the degree of urgency, e.g.
0: no need; 2: should be considered; 3: seems reasonable; 4: urgent need.

subjectOfReorganisation Allows for expressing whether the corresponding type of organisational unit
should be reorganized. The assigned value represents the degree of urgency, e.g.
0: no need; 2: should be considered; 3: seems reasonable; 4: urgent need. While
both attributes, subjectOfOutsourcing and subjectOfReorganisation, may reflect
the actual performance of the OrganisationalUnit, hence, an instance level fea-
ture, they are still assigned to the type level, because they are related to a poten-
tial change of the organisational structure.

Attributes with reference to instance level

<<derivable>> This attribute serves to represent the average span of control across all positions

averageSpan of the OrganisationalUnit that fulfil managerial functions, i.e. that are superior to
other positions.

<<obtainable>> The actual number of employees working for the organisational unit.
<<derivable>>

numberOfEmployees

<<obtainable>> The percentage of females among the employees.

<<derivable>>

42



Outline of a Method for Designing Domain-Specific Modelling Languages

averageCostPerPosition

genderRatio

<<obtainable>> The actual number of positions assigned to the organisational unit. Often, this

<<derivable>> number will be the same as for the attribute employees. But it does not have to

numberOfPositions be, since positions may be vacant or filled by more than one employee. It can be
obtained from an external system, assigned manually or calculated from the
positions assigned to this organisational unit and all its subunits.

<<obtainable>> The fluctuation of all positions assigned to this organisational unit within a certain

<<derivable>> period (e.g. a year). There are various formula for defining fluctuation. At best,

fluctuation this feature allows for selecting from a list of corresponding concepts. The actual
value could be provided by a corresponding information system, e.g. a HRM
system.

<<obtainable>> The value of a performance indicator on an ordinary scale, e.g. O: critical; 1: satis-

performance factory; 2: outstanding. The value can either be calculated from data provided by
e.g. an ERP system or assigned manually.

<<obtainable>> The average cost of a filled position assigned to this OrganisationalUnit. This

<<derivable>> value can be provided by an external system. It can also be calculated from the

values assigned to the positions of the organisational unit (provided the costs are
specified for all positions).

shareOfUnderPerformers

composed_of

<<obtainable>> The share of costs for personnel from the entire costs assigned to an organisa-
shareOfPersonnelCost tional unit — to be obtained from an external system.

<<obtainable>> The average age of all employees of this organisational unit— also to be obtained
<<derivable>> from an external system.

averageAge

<<obtainable>> The share of positions that are assessed as not performing satisfactorily. This
<<derivable>> value can be aggregated from corresponding values of the included organisation-

al units, for which in turn the value would be calculated from corresponding
values of the assigned position types or positions.

Associations on type level

with OrganisationalUnit. A type of organisational unit can be composed of zero or
more (0,*) other organisational unit types. On the other hand, an organisational
unit type can be part of zero or one other organisational unit type. If the attribute
orglevel is specified for the types of organisational unit that are involved in this
relationship, the level of the composed type must be higher than the levels of its
parts.

hosts
(corresponds to hosted_by for Commit-
tee)

with Committee. A type of organisational unit can host zero or more (0,*) com-
mittee types. On the other hand, a committee unit type can be hosted by one
(default) or more than one organisational unit type.

includes
(corresponds to part_of for Posi-
tionShare)

with PositionShare. A type of organisational unit can include zero or more (0,*)
PositionShare. On the other hand, a PositionShare can be part of one or more
organisational unit types.

assigns
(corresponds to assigned_to for Role)

with Role. A type of organisational unit can assign zero or more (0,*) role types.
On the other hand, a role type can be part of zero or more organisational unit
types.

characterizedAs
(corresponds to characterizes with
LocalUnitType)

With LocalUnitType. An OrganisationalUnit has zero to one LocalUnitType.

supervisedBy

With Position, Role or Board. Multiplicity is zero to many on both sides.

43




Elements of the Method

(corresponds to superior_of for Posi-
tion, Role or Board)

subordinated_to
(corresponds to superior_of for Posi-
tion, Role or Board)

With Position, Role or Board. This relationship is used in cases where no particu-
lar definition of superiority exists or matters. Multiplicity is zero to many on both
sides. The number of superiors must not exceed the value of maxLineOfCom-
mand within the corresponding Organisation.

functionalSubordinated_to
(corresponds to functionalSuperior_of
for Position, Role or Board)

With Position, Role or Board. Multiplicity is zero to many on both sides.

objectSubordindated_to
(corresponds to objectSuperior_of for
Position, Role or Board)

With Position, Role or Board. Multiplicity is zero to many on both sides.

disciplinarySubordinated_to
(corresponds to disciplinarySuperi-
or_of for Position, Role or Board)

With Position, Role or Board. Multiplicity is zero to many on both sides.

part_of

Constraints

With Organisation. An OrganisationalUnit can be assigned to zero or one Organi-
sation.

Exclude staff units from If the attribute staffUnit is specified as #true, it is not possible that the Organisa-
regular line of command tionalUnit includes any other OrganisationalUnit that has this attribute set to
#false. Furthermore, it is not possible that a Position that is in command of this
OrganisationalUnit is in command of any OrganisationalUnit other than an in-
cluded staff unit.
No cyclic composed_of rela- An organisational unit type A must not be composed of a further organisational
tionships unit type B, which in turn is composed of A (Constraint C3).
Not part of unit with lower or | An OrganisationalUnit must not be part of another OrganisationalUnit that has a
equal level level assigned (through an associated LocalUnitType), which is lower than or
equal to its own level (Constraint C1).
Note that this constraint applies only, if the OrganisationalUnit, it refers to are
associated with an initialized instance of LocalUnitType.
consistent use of orgDimen- If the attribute orgDimension within Organisation is specified, then the corre-
sion sponding attribute of OrganisationalUnit must have a compliant value. If, e.g.
orgDimension is specified as #functional, it is not possible for an Organisational-
Unit to use #matrix.
No more superiors than The sum of superiors (functional, object, disciplinary) must not exceed the value
maxLineOfCommand of maxLineOfCommand specified for the corresponding Organisation.
No joint use of generic and If a subordinated_to relationship is specified for an OrganisationalUnit, there
specific superiority must be not further special subordinate relationship for this OrganisationalUnit.

Table 4: Exemplary Representation of Concept in Concept Dictionary

Usually, models constructed with DSML focus on types, i.e. the so called M1 level, and not on

instances. This is for a good reason: Often, a model is supposed to provide an abstraction

that is widely invariant over time. In many cases, instances are not invariant. There are,

however, exceptions to this rule. In case the following presuppositions apply to a modelling

scenario, representing instances in a model may be an option:

44




Outline of a Method for Designing Domain-Specific Modelling Languages

* The purpose of a model recommends accounting for instances.

* Abstracting instances to the type level would not fit the intended applications of a
model anymore.

* The existence and the relevant state of an instance are stable throughout the intended
lifetime of a model.

Usually, the question whether there is need for modelling instances can be addressed by ana-
lysing the exemplary diagrams developed during requirements analysis. Possible examples
of instances that could be included into models are cities, countries, organisational units (e.g.
‘Marketing Department’) or organisations (e.g. a particular company). With respect to de-
signing a meta model, these considerations imply a serious problem: The conception of a
meta model is usually related to the idea that all concepts of a meta model are located on the
M: level. Corresponding to that, concepts of a meta modelling language are located on the
Mz level. In order to include types into a modelling language, it is required that a meta mod-
elling language allows for expressing that — or, in other words, that a meta model can be
overloaded with respect to the level of abstraction it represents. While most meta modelling
languages do not allow for specifying types, it is nevertheless recommended to identify po-
tential candidates that could/should be included in the intended DSML.

The next step concerns the selection of a meta modelling language and a corresponding meta
modelling tool. It is optional: In some cases there will be no choice anymore because the use
of a certain meta modelling language is mandatory. Selecting a meta modelling language
recommends considering and assessing respective requirements. For a comprehensive dis-
cussion of requirements and a comparative assessment of meta modelling languages see
Frank (2011a, p. 3 f.). In any case, it is recommended to use a graphical notation with the me-
ta modelling language that allows to clearly distinguish a meta model from prevalent models
on the M1 level at first sight. In order to promote abstraction and reuse, it can be useful to
introduce specific types for specifying attributes of meta types. Different from the types that
are built in the meta modelling language, these customized types require an explicit specifi-
cation. Therefore it is a good idea to distinguish the representation of specific types from that
of generic types. In the excerpt shown in Figure 14 specific types are printed in boldface. If
the specification of a concept goes along with semantic reductions, there should be at least a
comment in the meta model that points at this potential problem. In addition to that a corre-
sponding warning can also build into the language specification. In that case, the language
user will be forced to account for possible dysfunctional effects. Figure 15 shows the excerpt
of a meta model to specify a DSML for modelling indicator systems. To prevent users from
the careless application of indicators, the definition of a certain indicator type requires the
user to explicitly comment on intended effects and (‘presumedOrganizationallmpulse’) and

possible dysfunctional effects (‘potentialDysfunctionalConsequences’).

The MEMO meta modelling language (Frank, 2011a) does not only provide a corresponding

graphical notation, it also allows for representing intrinsic features and for marking features

45



Elements of the Method

as obtainable or derivable (see section 6.1). Figure 14 shows an excerpt of a meta model to
illustrate the use of the MEMO MML.

LocalUnitType

name: String
description: String

level: PositiveInteger

<« characterized_ by

staffUnit: Boolean

UnitOfWork

name: String
mission: Mission

[o] actPerf: Performance

A

PermanentUnitOfWork

orgDimension: OrgDimension
[dlo] numberOfPositions: PositiveInteger
[dlo] numberOfEmployees: PositiveInteger

context OF
def:

let ownLevel : self.characterizedBy.level
inv:

self.composedOf->forAll (o |
o.characterizedBy.level < self.ownLevel)

OrganisationalUnit

corporateRelevance: Affirmation
subjectOfOutsourcing: Affirmation
subjectOfReorganisation: Affirmation

[dlo] genderRatio: Float
[dIo] fluctuation: Float
averageAge: Float
[dlo] shareOfGraduates: Float
[dlo] shareOfUnderPerformers: Float
[d] averageSpan: Float
[o] shareOfPersonnelCost: Float

[dlo] averageCostPerPosition: Money

A A

0,1 1.1

A

~

part _of »

Organisation

Figure 14: Excerpt of a meta model specified with the MEMO MML

applied through »

name : String

formula : String

timeHorizon [0..1] : TimeHorizonType
unitOfMeasure : Unit
sourceOfRawData : DataSourceType
freqOfMeasurement : FrequencyType
freqOfReview : FrequencyType
purpose : String

intention : String

assumptions : String

justification [1..*] : RationaleSpec

H Value : Value

H DateOfMeasurement : DateTime

0 levels: PositiveInteger

maxLineOfCommand: PositiveInteger

RepresentsRelation

.| description : String

intendedDirectionOfChange : {positive,negative,unspecified}
justification [0..*] :
levelOfReliance : OrdinalValue

RationaleSpec

presumedOrganizationallmpulse : String
potentialDysfunctionalConsequences : String

0..*

represents p E
1.1

Figure 15: lllustration of Enforcing a Critical Use of a DSML through Respective Attributes — adapted
from Strecker et al. (2011)

Like with any other complex abstraction, the design of a meta model will usually require

demanding decisions. They will often relate to conflicting design goals. All design decisions

that do not seem to be trivial should be documented using a common structure, e.g. ‘problem

description’, “design alternatives’, ‘selected alternative’, ‘rationale’. In addition to design de-

cisions, the specification of a meta model is also based on principle attitudes and styles of the

language designer. For instance, some designers prefer to specify as much of a DSML’s se-

46



Outline of a Method for Designing Domain-Specific Modelling Languages

mantics through the abstract syntax, while other tend to keep the abstract syntax simple and
represent semantics in additional constraints. The example in Figure 16 illustrates these two
specification styles. Both styles have specific advantages and shortcomings. By putting more
emphasis on additional constraints, a meta model can be kept simpler. Also, representing
semantic constraints on a syntactical level will often require to introduce artificial concepts,
like ‘SimpleAttribute” in the below example. Therefore, aiming at a lean meta model with
additional constraints may — at first sight — contribute to improved comprehensibility. How-
ever, additional constraints should be specified in a formal language such as the OCL. For
many observers, a larger number of formal constraints will not improve the readability of a
meta model. With respect to implementation, this style delegates more responsibility to pro-
grammers. Usually, the meta types of a meta model will be represented as classes in a corre-
sponding model editor. In the case of emphasizing syntactical specification, the correctness
of larger parts of a model can be checked on the class level. In the other case, constraints
have to be implemented and checked with respect to particular instance states. Therefore,
with respect to integrity, there is good reason to avoid specifying “types” through instance
states. However, at the same time, introducing additional meta types to emphasize syntacti-
cal specification may threaten integrity: Certain changes applied to a model are likely to re-
quire class migration — e.g. migrating an instance representing an attribute from the class
‘SimpleAttribute’ to the class “Attribute’. Class migration is not only costly, but also risky.
Due to conflicting requirements, choosing a particular specification style is also a matter of
subjective preferences. To guide the reader of a meta model with a better understanding, it is

a good idea to briefly comment on the preferred specification style.

47



Elements of the Method

Variant 1: Emphasis on
Additional Constraints

includes» ALV -I <« specifies Type
Name: String | 1,1 0,* | Name: String | 0,* 0,1 | Name: String
0,1 . 0,*
specifies»

context Attribute
inv:
self.class->exists implies not (self.type->exists)

Syntax: ok Syntax: ok
Employee Employee
firstName: String firstName: String
lastName: String lastName: String
skills: Competence, String skills: Competence
not valid valid

Variant 2: Emphasis on
Syntactical Specification

includes» WaAlNigla7AViiglolN] (]

Name: String

Type

Name: String | 1 4

Name: String
1,1

«aspecifies

Attribute

specifies» SimpleAttribute

0,* 0,*
Syntax: wrong Syntax: ok
Employee Employee
firstName: String firstName: String
lastName: String lastName: String
skills: Competence, String skills: Competence
not valid valid

Figure 16: lllustration of different Specification Styles

After the specification of a meta model, an intensive and thorough evaluation is mandatory.
This is mainly for two reasons: First, a meta model usually includes specific pitfalls related to
subtle differences in abstraction levels, neglected modelling scenarios or inappropriate con-
straints. Second, a language specification should be as stable as possible, because later
changes will usually result in costly adaptations of models and especially of related tools.
Unfortunately, the evaluation of a meta model faces particular challenges. Even more than
other conceptual models, a meta model cannot be tested directly against targeted domain
languages. This is for various reasons. In general, the concepts specified through a meta
model are linguistic constructions that include a prescriptive element in the sense that they
propose how to structure the targeted domain. Therefore, the concepts may intentionally

differ from existing technical concepts, because they are supposed to be superior with re-
48



Outline of a Method for Designing Domain-Specific Modelling Languages

spect to certain purposes. On the other hand, with respect to comprehensibility and usability
of language concepts, it will often be a design goal that they correspond to terms prospective
users are familiar with. Conflicting goals like this are a further reason why a simple compari-
son against an existing terminology will often not be sufficient. It is certainly a good idea to
involve prospective users. However, it may be asked too much of prospective users to judge
a meta model directly. Instead, the concepts could be illustrated by showing how to use
them for exemplary modelling purposes. In addition to that, a discursive evaluation is rec-
ommended. It requires knowledgeable participants and should include a systematic review
of the meta model with special emphasis on critical design decisions. The revised meta mod-

el needs to be documented comprehensibly.

Input: examples of meta models, previously developed conceptual models of the targeted

domain, guidelines for designing meta models
Participants: Language Designer, Domain Expert, User, optional: Tool Expert

Risks: The specification of a DSML will usually face remarkable challenges. Among other
things, they relate to conflicting requirements and to the differentiation of language and lan-
guage application (see above). Language designers with too little experience may overlook
these challenges and produce meta models that are not satisfactory. On the other hand, lan-
guage designers who are aware of the specific problems may struggle for a long time with-

out developing convincing solutions.

Results: meta model, preferable specified with a meta modelling tool that allows for further

transformation; extensive documentation
6.2.8 Design of Graphical Notation

It seems reasonable to assume that the graphical notation is of considerable relevance for the
comprehensibility, usability and productivity of a DSML. This assumption is backed by a
various studies (for an overview see Moody, 2009, p. 758). Therefore, it will usually be no
good idea to regard the graphical notation as a meaningless (in the sense of formal seman-
tics) and, hence, marginal feature of a modelling language. Instead, it is recommended to

design it with special care and consideration.

Objectives: Design and document graphical notation.

49



Elements of the Method

Micro Process:

Create example
diagrams
Communicate
assignment

Create draft version
of notation

Create
documentation

Evaluate and revise
notation

Figure 17: Micro Process 'Design of Graphical Notation'

The creation of a graphical notation is special challenge for at least two reasons. First, there is
not much solid ground - in the sense of a theoretical foundation — to build on. Moody pro-
poses probably the most ambitious approach to address this problem (Moody, 2009). How-
ever, as we shall see it is still not sufficient to clearly guide the design of a graphical notation.
Second, those who are experts in the specification of a modelling language focus on seman-
tics and abstract syntax. Usually, they are no experts in the design of a graphical notation.
Sometimes, they will not even be interested in this aspect of language design. Third, those
who are trained in the design of iconographic symbols will often lack knowledge about the
use of DSML. Even though the existing theoretical background is not satisfactory yet, there
are a few guidelines that are backed by theoretical considerations. Therefore, we suggest
accounting for existing guidelines — but not without carefully analysing whether and how to
apply them appropriately. The following guidelines reflect our own experience and also

build on suggestions in the respective literature.

Guideline 1: Build semantic categories of concepts. A category should be characterized
by clear features and be intuitively distinguishable from other categories. Rationale:
Semantics categories are an important prerequisite for designing expressive and dis-
criminating symbols. Example: In process modelling one key category could comprise
processes and further category could comprise events.

Guideline 2: Create generic symbols for each category. On the one hand, the concepts
covered by a category should be represented by variations of the respective generic
symbol. On the other hand, generic symbols of different categories should be distin-
guishable at first sight. Rationale: This guideline should foster the appropriate percep-
tion and interpretation, hence, the comprehensibility of a graphical notation. It is fur-
ther refined in guideline 3.

Guideline 3: The bigger the semantic difference between two concepts, the bigger the
graphical difference of the corresponding symbols should be. Moody speaks of “visual
distance” (p. 763). This principle applies both to the semantic differences between cate-
gories and to the semantic differences between concepts of a particular category. While

50



Outline of a Method for Designing Domain-Specific Modelling Languages

there is lack of a convincing precise definition of visual distance, notational differences
can be created through shape, colour or text (see guideline 5). Rationale: Using a model-
ling language effectively requires discriminating quickly between concepts. The more
different two concepts look, the faster discrimination should be possible. At the same
time, a low visual distance should help with identifying and appropriately using simi-
lar concepts.

Guideline 4: Prefer icons over shapes. This principle supplements the previous one.
While two geometric shapes can be clearly different, e.g. a circle and a rectangle, they
lack a reference to the represented concept. An icon is characterized by creating such a
reference. This can be realized by an iconic representation of an object, e.g. a letter or a
computer, or by the representation of a certain characteristic feature, e.g. symbol de-
picting a lightning for representing an exception. Rationale: Including a perceptual ref-
erence into a symbol will contribute to a more intuitive understanding of a notation
and, hence, improve its usability and its suitability as a communication medium (see
also requirement U1).

Guideline 5: Combine shape (including icons), colour and text effectively. There are
studies in Cognitive Psychology which suggest that shape is a more effective instru-
ment to accomplish visual discrimination (Moody, 2009, p. 763). Nevertheless,
Moody’s resulting recommendation is not entirely convincing: “For this reason, shape
should be used as the primary visual variable for distinguishing between different se-
mantic constructs.” (ibid) Instead, a more differentiated approach seems to be better
suited. In general, semantic categories should be represented by shapes (or icons). This
will usually involve the use of colours. The same principle applies to concepts of a cer-
tain category, too. However, there are exceptions to this rule. On the one hand, colour
can be used as an additional discriminator. This makes sense, if a concept is very simi-
lar to others so that it would be difficult and/or misleading to define a separate symbol
for representing it. In addition to that, colour can be used as an instrument for users to
express additional meaning that is not part of the DSML. Text can be used similarly to
colour. It is of particular importance, if the variety of concept occurrences is too large to
be covered by symbols. For example: Expressing multiplicities can be accomplished
through a set of symbols as it is done in various flavours of the ERM. Apart from the
question how comprehensible these symbols are for people who do not use them on a
regular base, they are restricted to a given set of multiplicities. If the concept of multi-
plicities should allow for defining any specific upper and lower bound (as long as the
upper bound is greater zero and greater or equal to the lower bound), such an ap-
proach simply does not work anymore. Text as an instantiation of a modelling concept
is inevitable whenever it is required to name concepts of a model. Rationale: Each rep-
resentation type has specific advantages that need to be evaluated against the require-
ments a DSML is supposed to satisfy. Therefore, combining representation types ap-
propriately allows for improving a DSML'’s usability. Figure 18 shows an example of
symbols that express starting and terminating events where colour and text are added
to a shape in order to foster intuitive understanding.

51



Elements of the Method

sTOP
START

=

Order received Payment
received

Figure 18: Example for Combining Shape, Colour and Text

Guideline 6: Avoid “symbol overload” (Moody, 2009, p. 763). A symbol should be
clearly assigned to one particular modelling concept. Rationale: Overloading symbols
would contribute to ambiguity and confusion.

Guideline 7: Avoid redundant symbols (Moody, 2009, p. 762). Rationale: If a concept
can be expressed by alternative symbols, both modellers and model observers are
stressed with additional cognitive effort without additional benefit.

Guideline 8: Represent monotonic semantic features of a concept through composi-
tions of symbols. Sometimes, concepts of a DSML need to be further refined to allow
for expressing a more specific meaning. If this is accomplished by adding features in a
monotonic fashion, each of these features can be represented by a respective symbol. A
particular occurrence of the concept will then be represented by a composition of relat-
ed symbols. Rationale: Combining graphical elements contributes to a more systematic
construction of a graphical notation that is in line with the semantics of the related con-
cepts. It also helps avoiding overwhelming users with huge palettes of prefabricated
symbols. With respect to building tools, it implies a larger effort for implementing the
composition of more complex graphical symbols. At the same time, it improves flexi-
bility. The example in Figure 19 illustrates the composition of various event types from
symbols that express certain semantic features.

evgnt created at point in time created at end of time interval

new data 3 ‘
created E’;J ."k":f.j::"data deleted

notification through e-mail

notification through software
send manually

notification through
telephone

Figure 19: Example of Combining Notation Elements for Representing differentiated Concepts

In addition to principles which guide the design of graphical symbols that represent certain
modelling concepts, further notational elements may be required to cope with the complexi-

ty created by large models.

Guideline 9: A graphical notation should include symbols that allow for reducing dia-
gram complexity. On the one hand, these are symbols that represent compositions of a
set of other symbols. If required, they serve as a starting point for decompositions. A
typical example would be a symbol used to represent aggregate processes. On the oth-
er hand, special symbols can be introduced that allow for depicting a set of identical
diagram parts by one common representation. The example in Figure 20 illustrates this
kind of simplification: In a business process model, a branching decision results in two
52



Outline of a Method for Designing Domain-Specific Modelling Languages

alternative paths of execution. If the alternative paths at some point continue in identi-
cal ways, these identical parts of both paths could be merged into one common repre-
sentation. Rationale: Lowering the visual complexity of a diagram can substantially con-
tribute to a better understanding and, hence, to increased productivity.

determine acquisition costs create offer
off-the-shelf acquisition costs determined
request for identify
offer received product type
custom-made calculate production costs create offer
production costs calculated
determine acquisition costs
off-the-shelf acquisition costs determined
request for ic(:jlen'giiyy
: roduct type
offer received p P create offer
custom-made calculate production costs
production costs calculated

Figure 20: Example of merging two identical Paths of Execution

In order to apply the suggested guidelines appropriately, it is mandatory to develop a clear
idea of the prospective language users and the modes of use to be covered. This recommends

answering the following questions:

* Are prospective users already familiar with graphical modelling languages?

* Are they supposed to use the DSML on a regular base?

*  What are typical use scenarios?

* What are the concepts of the DSML users are most interested in?

* What are aesthetic preferences of the DSML users?

* Is the group of prospective users homogeneous or rather heterogeneous with respect
to the above questions?

Depending on the answers to these questions, further refinements may be required. If the
prospective users do not only comprise experts but also novices that will use the DSML only
rarely, it may be an option to provide a simplified, “light” version of the notation that covers
only those concepts that are sufficient for inexperienced users. Note, however, that this may
require substantial effort with respect to modifying/extending the syntax specification. If

aesthetic preferences are expected to vary, one could provide different flavours of a notation,

53



Elements of the Method

e.g. one that features artistic icons and a further one that emphasizes a more business-like

style.

The design of an elaborate graphical notation recommends involving a professional graphic
designer, which implies to somehow specify the corresponding assignment. Experience
gained in previous projects indicates that example diagrams featuring a preliminary notation
serve as a useful illustration for communicating concepts and modelling purposes to a
graphic designer. Subsequently, the graphic designer is supposed to develop a draft version
of the notation, which will then be — if required — repeatedly evaluated and revised until a

satisfactory state is accomplished.

Finally, a documentation of the graphical notation is created. It consists at least of a compre-
hensive listing of all symbols and respective descriptions. Furthermore, it helps to illustrate

the notation with a few example diagrams.
Input: (Revised) exemplary diagrams from requirements analysis.
Participants: Domain Expert, User, Language Designer, Tool Expert, Graphic Designer

Risks: Often, most of the participants will not have a specific expertise in designing and judg-
ing a graphical notation. While graphic designers should be familiar at least with the design
of iconographic symbols, they may lack a clear understanding of the very purpose a DSML
should serve. As a consequence, there is a clear risk that the graphical notation remains dis-
satisfactory. To reduce this risk, special attention should be applied to the selection of the

graphic designer and to the execution of test procedures.
Results: Documentation of graphical notation, illustrated through exemplary diagrams
6.2.9 Development of Modelling Tool

Often, the effective and efficient use of a DSML will require a corresponding modelling tool.
Tool development is not an inherent part of the proposed method to developing a DSML.
Also, the development of a modelling tool can require a major software development project.
Nevertheless, a brief consideration of developing a tool is included here. It serves to point at
key aspects relevant for developing a tool that may — in part — be accounted for already with

the language specification.

Objectives: realization of a modelling tool for the previously developed DSML

54



Outline of a Method for Designing Domain-Specific Modelling Languages

Micro Process:

Map meta model to
software structure

Select relevant
analysis functions

Implement
prototype

Present users with l
Prototype\//

Figure 21: Micro Process 'Development of Modelling Tool'

Extend/revise
requirements

A meta model provides a good foundation for developing a modelling tool: Meta types can
be represented by classes. However, it is not sufficient to simply map each meta type to a
corresponding class. On the one hand, the specific requirements related to the modelling tool
may recommend deviating from the structure of the meta model. For example: If it can be
expected that the meta type of model element is frequently changed during the lifetime of a
model, it may be a good choice to represent the respective meta types in one class and differ-
entiate the “type” through states of corresponding objects (see section 6.2.7). On the other
hand, further aspects that are not part of a meta model need to be accounted for. At first,
there are features that will usually be considered as mandatory, such as adding time stamps
to model elements and to provide for access control. In addition to that, persistency will al-
ways be an issue. In the simplest case, persistency could be achieved by storing a diagram
together with the corresponding model as a file. More demanding solutions would separate
a diagram from the respective model, allowing for storing various diagrams of one model. In
this case, it will usually be more appropriate to use a database in order to not jeopardize in-
tegrity. The user-interface should offer effective patterns of interaction and - if required —
account for different user profiles. In order to design a tool that fits its prospective users’
needs, it is necessary to perform a requirements analysis that supplements the analysis of
requirements related to the DSML. A good starting point for analysing tool requirements are
the exemplary diagrams used already before. For each diagram, the required tool functions
as well as corresponding user interface requirements have to be analysed. Often, prospective
users will not be familiar with DSML tools. Therefore, it is recommended to implement a
prototype at an early stage to promote feedback by users. Based on that, requirements may
be revised or further requirements may evolve. These feedback circles are performed until
the tool has reached a satisfactory state. Since a DSML editor will usually be a complex soft-

ware system, a thorough design of its architecture is mandatory.

55



Elements of the Method

Often, developing a tool from scratch will be no option, since it causes too much effort.
Therefore, it will usually be crucial to deploy a meta modelling tool. It should allow for spec-
ifying the meta model of the targeted DSML with an appropriate meta meta modelling lan-
guage. Subsequently, the meta modelling tool should create a first version of the intended
DSML editor. Usually, this will be accomplished by generating corresponding code from the
meta model. For a more detailed description of generating modelling tools see Frank (2011a),
Steinberg et al. (2008), Gulden and Frank (2010), for an approach that avoids the obstacles of
code generation see Bettin and Clark (2010). Sometimes, a DSML tool may not just be used
during build-time, but also during run-time, which implies additional requirements and
challenges (see Frank and Strecker, 2009).

Input: exemplary diagrams from requirements analysis, meta model; optional, but recom-

mended: meta modelling environment
Participants: Domain Expert, User, Language Designer, Tool Expert

Risks: Developing a DSML editor requires experienced and highly qualified software devel-
opers. This is not only the case for developing the tool from scratch, but will usually be the
case for deploying additional tools or frameworks. At the same time, there is only little spe-
cific experience with developing DSML editors. Against this background, two specific risks
have to be accounted for. First, if the available software developers are not sufficiently quali-
fied, the entire project is likely to fail. This risk implies carefully checking on the developers
abilities in advance, which may result in looking for specialized software companies or free-
lancers. Second, cost estimates will often be hard to create and judge. This risk needs to be
explicitly accounted for. It can be addressed by starting with a small prototype to get a better
idea of the required effort. In any case, it should be made sure that a project’s success does

not depend on tight deadlines.
Results: DSML tool, optionally as prototype
6.2.10 Evaluation and Revision

In order to ensure a certain quality level, it is mandatory to finally evaluate and possibly re-

vise the tool. The evaluation needs to account for specific challenges.

Objectives: creation of systematic and comprehensible evaluation; if needed, revision of tool

56



Outline of a Method for Designing Domain-Specific Modelling Languages

Micro Process:

Create collection of
test cases

Evaluate economics { Check DSML againsq

requirements

Analyse current

[ Compare current j
practice to DSML use practice

Analyse effects of
DSML use

Figure 22: Micro Process 'Evaluation and Revision'

First, the evaluation of a DSML and a corresponding modelling tool recommends checking
them against the requirements — both generic (see section 3) and specific. For some require-
ments, it will be fairly easy to decide whether or not they are fulfilled. For example: “There
should be concepts that allow for assigning probabilities to alternative paths of executing a
business process.” In these cases, it will be sufficient to determine and document whether or
not a respective requirement is satisfied. With other requirements, an assessment may be
harder. For example: “The modelling language should provide domain-specific concepts as
long as they are regularly used and their semantics is invariant within the scope of the lan-
guage’s application.” or: “The concepts of the language should be easy to comprehend by
different groups of users.” There are various approaches to reduce the respective uncertain-
ty. First, it will usually be helpful to check language features against the background of a use
case. Therefore, evaluation recommends building on the use scenarios created for require-
ments analysis. Each use case serves to analyse whether and how corresponding require-
ments are satisfied by the DSML. For this purpose, a discursive evaluation is of pivotal im-
portance. It should include language designers, domain experts and prospective users. Users
as the primary addressees of the language play a key role. However, that does not mean to
simply rely on users’ assessments. Instead, it is important to account for their respective
background, such as experience with similar or other modelling languages, their formal edu-
cation, the time they had to learn the language and/or the tool, their attitude towards DSML
in general etc. Similar considerations apply to other participants, too. However, language
designers can be expected to have a different background which should enable them to pro-
vide more elaborate assessments — which, however, may also cause subtle bias in their judg-
ment. In general, the evaluation of linguistic artefacts faces a substantial challenge: In order
to assess a language, we need to speak it (to some degree). In addition to that we need to
know some kind of meta language that enables us to speak about the language to assess.
Hence, the language we know is a necessary instrument, but it also limits our reasoning

powers because we cannot entirely go beyond our language (see section Fehler! Ver-

57



Elements of the Method

weisquelle konnte nicht gefunden werden. and section 3). Hence, it may well be that a dif-
ferent language that lies beyond our imagination would provide for a more effective and
efficient structuring of the problem. At the same time the problem itself might appear differ-
ent, if it is described/constructed in a different language. While these considerations seem to
be of mainly philosophical nature, they are nevertheless important for the reflective evalua-
tion of a DSML. On the one hand, they recommend being sensitive to the effect of existing
languages skills. On the other hand, they emphasize the contingency of the subject: Lan-
guage skills as well as language use are subject of change. Therefore a particular DSML is a
moving target. As a consequence, its assessment should not be restricted to a certain point in

time, but rather be organized as a permanent process.

Evaluating a DSML against requirements does not necessarily allow for assessing its contri-
bution to achieving pivotal goals such as improving productivity or quality of problem solv-
ing. To analyse this aspect, the current practice can be investigated for selected analysis sce-
narios. For each of the selected scenarios, the effects of using the DSML can then be analysed
in detail. Based on these analyses current practice can be compared against the use of the
DSML - with respect to aspects such as learning effort, productivity, comprehensibility,
quality of solution and documentation etc. Since an economic evaluation will often be im-
portant to justify investments into future DMSL projects, it may be required to perform a
comparative economic assessment of utility and costs. Note, however, that this assessment
addresses a moving target, since costs and utility may change with the availability of further

tools and with users’” qualification.

Input: documentation of DSML, tool implementation, documentation, exemplary diagrams,

use scenarios
Participants: Domain Expert, User, Language Designer, Tool Expert

Risks: The evaluation of languages may be jeopardized by various sources of sometimes sub-
tle bias. In addition to that, there may be political interests involved that contribute to oppor-
tunistic assessments. Therefore, each assessment should be supplemented by a justification.
If it is not possible to give a convincing justification, the assumptions an assessment is based

on should be made explicit.

Results: evaluation report, revised and approved tool

58



Outline of a Method for Designing Domain-Specific Modelling Languages

7 Evaluation and Conclusions

DSML seem as a logical evolution of GPML. Their emergence corresponds to the evolution of
elaborate technical languages, which are a key instrument of promoting industrial and post-
industrial productivity. There would be no advanced craft, no engineering and no medicine
without specific technical languages — just to name only a few fields. Against this back-
ground, it seems astonishing that complex systems are still analysed and designed with
GPML that are restricted to a few generic concepts such as ‘class’, ‘attribute’, ‘state’ etc.
DSML represent a clearly more productive instrument for describing and analysing prob-
lems as well as for designing systems. However, the specification of a DSML is a remarkable
challenge. This is for various reasons. First, we are entering terra incognita to a certain de-
gree, because so far there is only little experience with designing and using DSML. This re-
sults in the problem that it will often be difficult to ask the right questions. Second, the de-
sign has to account for competing or conflicting goals. One specific challenge is the quest for
sustainability — even more than a model, a language should be stable for a longer time —
which is contrasted by the contingent evolution of many domains. Third, the specification of
a DSML requires a meta modelling language. However, it is not trivial to assess the benefit of
an instrument one has little experience with for a complex task one is not too familiar with.
The method presented in this report is aimed at providing a framework and guidelines to
reduce complexity and risk related to the development of DSML. More specifically, it should
satisfy the requirements outlined in chapter 5. Table 5 presents an evaluation of the method

against these requirements.

Requirement

Evaluation

P1: The range of possible
DSML should be outlined

P2: Peculiarities and chal-
lenges related to DSML de-
sign should be accounted for
in detail.

P3: Conflicting design goals
should be made explicit.

P5: Prospective users should
be effectively supported in
understanding the DSML.

P6: The method should pro-

The method is aimed at DSML for enterprise modelling. Hence, prospective
users should get a relatively clear idea of the subjects the method can be
applied to. Nevertheless, it is still possible that further, not yet foreseen
DSML in the realm of enterprise modelling will create additional require-
ments for a method. Also, it is likely that the method can be applied to areas
other than enterprise modelling, too.

Although it would be inappropriate to claim that the method includes a com-
prehensive list of peculiarities and challenges, it provides advanced users
with extensive discussions of frequent problems (see e.g. 6.2.7). In addition
to that the method includes references to more specific publications.

Generic patterns of conflicting goals are accounted for, e.g. the conflict be-
tween a higher and a lower level of semantics or the benefits and shortcom-
ings of syntactic-centred versus semantic-centred specification.

Exemplary diagrams and corresponding use scenarios are suggested as a
pivotal instrument to develop a clearer picture of an artefact that we —and
especially prospective users — may not sufficiently understand at first.

Generic requirements of DSML are analysed in 5.

59



Evaluation and Conclusions

vide a description of generic
requirements.

P7: The method should ac-
count for the need to deter-
mine the economics of devel-
oping and using a DSML and
corresponding tools.

P8: The method should pro-
vide support for assessing
and selecting a meta model-
ling language and corre-
sponding development tools

P9: The method should ac-
count for protection of in-
vestment and therefore em-
phasize a longer term per-
spective.

P10: The method should
provide guidelines for design-
ing graphical notations.

P11: The tasks that need to
be performed during the
development of a DSML
should be assigned to roles.

The method emphasizes the relevance of an economic justification. It points
at key impact factors such as semantics and range of reuse. Furthermore, the
micro process ‘Evaluation and Revision’ includes guidelines for analysing the
economics of a DSML and a corresponding modelling tool.

In this report, requirements to be accounted for with the selection of a meta
modelling language are only briefly and indirectly accounted for in 6.1. The
method includes, however, a reference to a comprehensive requirements
analysis in Frank (2011a). Selecting meta modelling tools is addressed only
briefly in this report. There are, however, references to more specific publi-
cations included.

This aspect is emphasized repeatedly to foster awareness. Developing and
analysing use scenarios should always be accompanied by the question,
whether they will still be relevant in future times. However, the stability of a
DSML depends chiefly on the quality of abstractions and on the contingency
of the subject — which go both beyond the contributions of the method.

In addition to a set of guidelines (6.2.8), the method recommends involving a
graphic designer and suggests how to communicate a respective assignment.

The method includes a role model. The respective roles are used in the de-
scription of the micro processes.

Table 5: Overview of evaluating the method against requirements

The method has gradually evolved from our experience with designing DSML. In its current
state, it represents a major improvement compared to the times when we did not have a ded-
icated method. That does not mean, however, that we would regard it as mature. Instead, we
rather see it as a repository of knowledge about developing DSML that should grow with the
number of respective projects. In other words: Prospective users of the method should not
take all guidelines for granted, but reflect upon them and - if required — adapt them. This is
especially the case for researchers who pursue the design of a DSML as a scientific task: Any
research that either aims at analysing a language and its use or at inventing new "language
games" (i.e. artificial languages and actions built upon them), has to face a subtle challenge
that is caused by the demand to justify prospective contributions to scientific knowledge:
Every researcher is trapped in a network of language, patterns of thought and action he can-
not completely transcend — leading to a paradox that can hardly be resolved: Designing a
language is not possible without using a language. At the same time, any language we use

for this purpose will bias our perception and judgment.

60



Outline of a Method for Designing Domain-Specific Modelling Languages

8 References

Bettin, ]J. & Clark, T. 2010. Advanced Modelling Made Simple with the Gmodel
Metalanguage. Proceedings of Model-Driven Interoperability 2010. Springer.

Bunge, M. 1977. Treatise on Basic Philosophy. Vol. 3: Ontology I: The Furniture of the World,
Dordrecht, Reidel.

Bunge, M. 1979. Treatise on Basic Philosophy: Volume 4: Ontology II, Dordrecht, Reidel.

Ducasse, S. & Girba, T. 2006. Using Smalltalk as a Reflective Executable Meta-language. In:
NIERSTRASZ, O. & AL., E. (eds.) Proceedings of Model Driven Engineering Languages
and Systems, 9th International Conference, MoDELS 2006. Springer.

Fettke, P. & Loos, P. 2003. Ontological evaluation of reference models using the Bunge-
Wand-Weber-model. Proceedings of the Ninth Americas Conference on Information
Systems. Tampa, FL.

Frank, U. 1998. Evaluating Modelling Languages: Relevant Issues, Epistemological
Challenges and a Preliminary Research Framework. Arbeitsberichte des Instituts fiir
Wirtschaftsinformatik. Koblenz: University of Koblenz.

Frank, U. 2006a. Evaluation of Reference Models. In: FETTKE, P. & LOQOS, P. (eds.) Reference
Modelling for Business Systems Analysis. Idea Group.

Frank, U. 2006b. Towards a Pluralistic Conception of Research Methods in Information
Systems Research. ICB Research Reports. Universitat Duisburg-Essen.

Frank, U. 2011a. The MEMO Meta Modelling Language (MML) and Language Architecture.
2nd Edition. ICB Research Report. Essen.

Frank, U. 2011b. Multi-Perspective Enterprise Modelling: Background and Terminological
Foundation. ICB Research Report University Duisburg-Essen.

Frank, U. & Laak, B. v. 2003. Anforderungen an Sprachen zur Modellierung von
Geschéftsprozessen. Arbeitsberichte des Instituts fiir Wirtschaftsinformatik, Universitit
Koblenz. Koblenz.

Frank, U. & Strecker, S. 2007. Open Reference Models — Community-driven Collaboration to
Promote Development and Dissemination of Reference Models. Enterprise Modelling
and Information Systems Architectures, 2, 32-41.

Frank, U. & Strecker, S. 2009. Beyond ERP Systems: An Outline of Self-Referential Enterprise
Systems. ICB-Research Report University Duisburg-Essen.

Goldstein, R. C. & Storey, V. 1990. Some findings on the intuitiveness of entity-relationship
constructs. In: LOCHOWSKY, FE. H. (ed.) Entity-Relationship Approach to Database
Design and Querying. Amsterdam: Elsevier Science.

Grossmann, R. 1983. The Categorial Structure of the World, Bloomington, Indiana University
Press.

Gulden, J. & Frank, U. 2010. MEMOCenterNG. A full-featured modeling environment for
organisation modeling and model-driven software development. 22nd International
Conference on Advanced Information Systems Engineering (CAiSE '10). Hammamet.

Henderson-Sellers, B. & Ralyté, J. 2010. Situational Method Engineering: State-of-the-Art
Review. Journal of Universal Computer Science, 16, 424-478.

Kelly, S. & Tolvanen, ]J.-P. 2008. Domain-Specific Modelling. Enabling Full Code Generation,
Hoboken, N.J., John Wiley & Sons.

61



References

Moody, D. L. 2009. The “Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering. IEEE Transactions on Software Engineering,
35, 756-779.

OMG 2010. Object Constraint Language. Version 2.2.

Opdahl, A. L. & Henderson-Sellers, B. 1999. Evaluating and Improving Object-Oriented
Modelling Languages Using the BWW-Model. Information Systems Foundations
Workshop (Ontology, Semiotics and Practice). Sidney.

Steinberg, D., Budinsky, F., Paternosto, M. & Merks, E. 2008. EMF: Eclipse Modeling
Framework, Addison-Wesley Professional.

Strecker, S., Frank, U., Heise, D. & Kattenstroth, H. 2011. MetricM: A modeling method in
support of the reflective design and use of performance measurement systems
(forthcoming). Information Systems and e-Business Management.

Siittenbach, R. & Ebert, ]J. 1997. A Booch Metamodel. Fachberichte Informatik. Universitat
Koblenz.

Wand, Y. & Weber, R. 1995. On the deep structure of information systems. Information
Systems Journal, 5, 203-23.

62






Previously published ICB - Research Reports

2010
No 41 (December)

Adelsberger,Heimo; Drechsler, Andreas (Eds): “Ausgewdhlte Aspekte des Cloud-Computing aus einer
IT-Management-Perspektive — Cloud Governance, Cloud Security und Einsatz von Cloud Computing
in jungen Unternehmen”

No 40 (October 2010)
Biirsner, Simone; Dérr, Jorg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;
Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):
“16th International Working Conference on Requirements Engineering: Foundation for Software Quali-
ty. Proceedings of the Workshops CreaRE, PLREQ, RePriCo and RESC”

No 39 (May 2010)
Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption fiir den Studien-
gang M.Sc. Wirtschaftsinformatik an der Fakultit fiir Wirtschaftswissenschaften der Universitit Duis-
burg-Essen”

No 38 (February 2010)
Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschitzungen von CIOs und
WI-Professoren”

No 37 (January 2010)
Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-
ity Modelling of Software-intensive Systems”

2009

No 36 (December 2009)
Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verstindnis der IT-Governance - An-
regungen zu einer kritischen Reflexion”

No 35 (August 2009)
Riingeler, Irene; Tiixen, Michael; Rathgeb, Erwin P.:”Considerations on Handling Link Errors in
STCP”

No 34 (June 2009)
Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on
Service Monitoring, Adaption and Beyond”

No 33 (May 2009)
Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-
ger, Jan; Rosenberger, Marcel; Trepper, Tobias: , Einsatz von Social Software in Unternehmen — Studie
iiber Umfang und Zweck der Nutzung”

No 32 (April 2009)
Barth, Manfred; Gadatsch, Andreas; Kiitz, Martin; Riiding, Otto; Schauer, Hanno; Strecker, Stefan:
., Leitbild IT-Controller/-in — Beitrag der Fachgruppe IT-Controlling der Gesellschaft fiir Informatik
e V.”



Previously published ICB - Research Reports

No 31 (April 2009)
Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-
tems — Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)
Schauer, Hanno; Wolff, Frank: , Kriterien guter Wissensarbeit — Ein Vorschlag aus dem Blickwinkel der
Wissenschaftstheorie (Langfassung)”

No 29 (January 2009)
Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-
iability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: ,Computer Aided Assessments and Programming
Exercises with JACK”

No 27 (December 2008)
Schauer, Carola: “GrofSe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universititen im
deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Miiller-Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am
Beispiel der CRC Card-Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture — Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jiirgen: “Enterprise Modelling in the Context of Manufacturing — Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software-intensive Systems”

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilitit im Geschiftsprozess-management-
Kreislauf”

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradiiberwachung von Software”

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ,Relevance
Debate’



No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen fiir die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of
Model Curricula”

No 16 (May 2007)
Miiller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-
pacity Planning”

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen fiir IT-Professionals — Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden fiir Soft-
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstiitzung der Aufgaben des
IT-Managements — Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einfiihrender Lehrbiicher der
Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Uberlequngen zur Qualifizierung des wissen-
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag fiir ein Forschungspro-
gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-
search”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universititen — Ein Diskussionsbeitrag”



Previously published ICB - Research Reports

No 5 (April 2006)
Jung, Jiirgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I1I — Results
Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part II — Results Information Sys-

tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I — Research Objectives and

Method”

No 1 (August 2005)
Lange, Carola: , Ein Bezugsrahmen zur Beschreibung von Forschungsgegenstinden und -methoden in

Wirtschaftsinformatik und Information Systems”






Research Group

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

Core Research Topics

E-learning, Knowledge Management, SkillManagement,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Infelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker

Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Componentbased and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Miller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Computer Networking Technology

Prof. Dr. E. Rukzio
Mobile Mensch Computer Interaktion mit Software Services

Novel Interaction Technologies, Personal Projectors,
Pervasive User Interfaces, Ubiquitous Computing

Prof. Dr. A. Schmidt
Pervasive Computing

Pervasive Computing, Uniquitous Computing, Automotive User
Interfaces, Novel Interaction Technologies, Context-Aware
Computing

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski

Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

ISSN 1860-2/70 (Print)
ISSN 1866-5101 (Online)



	DocumentServlet-1.537.253.709.769
	ICB-Report-No42



